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Abstract—Vehicular-to-Everything (V2X) communication
standards ensure reliable and high-performance data exchange
among vehicles, pedestrians, and the roadside infrastructure.
5G New Radio (NR) is a crucial technology that enables
Vehicle-to-Network (V2N) and Vehicle-to-Infrastructure (V2I)
communications. In the security context, applications and
network services that rely on these communication interfaces are
subject to external attack sources like radio jamming that target
the same control and data frequencies used by them. This causes
system and network performance degradation and even Denial
of Service (DoS) events, which could lead to traffic accidents
involving vehicles and/or Vulnerable Road Users (VRUs). Radio
jamming attacks can adopt a smart behavior by changing the
targeted center frequency, bandwidth, duration, or time between
two consecutive attack bursts over time. Given the context above,
we propose in this paper a Deep Learning (DL)-based approach
to detect radio jamming attacks on V2I/V2N communication
interfaces. Our DL model is trained using a dataset collected
from our 5G-V2X testbed. Results show that our DL model
outperforms traditional ML algorithms and provides a detection
accuracy of up to 96%, a false positive rate of less than 3%,
and a detection time decrease of 39% minimum.

Index Terms—5G-V2X; Security; Deep Learning; Attack
Detection, Radio Jamming

I. INTRODUCTION

Vehicular systems integrated into 5G and Beyond networks

bring a new set of applications and network services to mobile

users that aim to enhance their Quality of Experience (QoE)

and their safety while on the road or close to it. Effective

communication between vehicles and roadside infrastructure,

as well as with pedestrians and cyclists, is crucial for success-

fully implementing automated vehicle assistance and optimal

traffic management systems. These communication channels

are particularly important for ensuring the safety of Vulnerable

Road Users (VRUs) and improving the overall efficiency

of our roads. Vehicular-to-Everything (V2X) communication

standards come to fulfill these requirements and ensure high

robustness, resilience, and stability levels, as well as high

throughput and low latency levels, all considering scenarios

that may comprise a large number and/or a large density of

connected users [1].

5G New Radio (NR) networks is a crucial technology in

these standardization efforts since it provides the Uu interface

that may serve for Vehicle-to-Network (V2N) communications

and the PC5 (sidelink) interface that in turn may serve for

Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P) and

Vehicle-to-Infrastructure (V2I) communications [2, 3]. 5G

networks in their pure, independent setup (also called “Stand

Alone” – SA) also bring important enablers such as Network

Slicing, Software Defined Networking (SDN), and Network

Function Virtualization (NFV), which allow to efficiently share

and manage the network resources among heterogeneous ap-

plications and network services according to their respective

Quality of Service (QoS) requirements [4].

In the security context, 5G-V2X communications also bring

several concerns that could threaten vehicular users and VRUs

safety, which could, in turn, prevent the successful deployment

of 5G-V2X standards by the automobile and network indus-

tries [5, 6]. For example, applications and network services that

depend on remote entities outside the vehicular infrastructure,

i.e., that would directly depend on the V2I/V2N communica-

tion interfaces, are subject to external attack sources beyond

their control domain. An important example is the deployment

of radio jamming attacks, which target control and data fre-

quencies used by V2I/V2N communications. System and net-

work performance degradation may happen as a consequence

of such attacks, which leads to a series of Denial of Service

(DoS) events, preventing not only the exchange of data related

to applications from mobile users but also the exchange of key

control data for traffic management that could lead to traffic

accidents involving vehicles and/or VRUs.

Detecting radio jamming attacks in the V2X context is a

challenging task since these can adopt a smart behavior by

changing over time either the targeted center frequency, and/or

the bandwidth, and/or its duration and time between two con-

secutive attack bursts. Such behavior prevents network entities

from easily detecting and/or predicting radio jamming attacks

and taking proper actions to reduce the negative effects while

ensuring real-time vehicles’ and VRUs’ safety. Radio jamming

attacks have been widely discussed in the literature. However,

their application in the 5G-V2X context, particularly about

V2I/V2N communication interfaces, has not been thoroughly

explored [7–9]. To ensure efficient detection of these attacks,

Machine Learning (ML) and/or Deep Learning (DL) based

techniques would enable optimal understanding of the behavior



of external malicious agents over time.

To this end, we propose, in this paper, a DL-based solution

to detect radio jamming attacks on V2I/V2N communication

interfaces. To do so, we first collect a dataset using our

5G-V2X testbed that is mainly focused on detecting and

mitigating cybersecurity attacks, such as Distributed Denial of

Service (DDoS) [10, 11]. Then, based on the obtained dataset,

we train several traditional ML models and our proposed

DL model. Our solution has shown promising results, with

a detection accuracy of up to 96%, a false positive rate of

less than 3%, and a detection time decrease of 39% minimum,

compared to the traditional ML algorithms.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III elaborates on the

5G-V2X testbed used to collect data and train the ML/DL

models. Section IV describes the methodology adopted to

collect our dataset, extract its features, and train the ML/DL

models. Finally, Section V shows our performance results, and

Section VI concludes this work.

II. RELATED WORK

Several works have been put forth in the literature to

maximize security measures while considering V2X com-

munications. However, few studies still consider ML-based

approaches to safeguard V2X communications from cyberat-

tacks.

Krayani et al. [12] proposed a V2X-specific joint GPS

spoofing and jamming detection method based on learning

a generative interactive model and then coding the cross-

correlation between RF signals transmitted by multiple vehi-

cles and their trajectories, where their semantic meaning is

coupled stochastically at a high abstraction level. In addition,

a cognitive Roadside Unit (RSU) outfitted with the obtained

Coupled Generalized Dynamic Bayesian Network (C-GDBN)

may forecast and estimate vehicle positions based on real-time

RF data. This enables RSU to determine whether both RF

signals and vehicle trajectories are evolving following the

dynamic rules encoded in the C-GDBN and, as a result, to

identify the source (i.e., a jammer attacking the V2I or a

spoofer attacking the satellite link) of the abnormal behavior

observed in the V2X environment. Lyamin et al. [13] con-

sidered two jamming strategies. Each transmitted Cooperative

Awareness Message (CAM) is jammed separately in random

jamming with a probability of p. Additionally, in ON-OFF

jamming, a series of k CAMs is destroyed with a probability

of 1 only while the ON state is present. The authors used

MATLAB simulations to create their dataset while considering

radio inference on CAVs. Karagiannis et al. [14] proposed an

ML-based scheme to distinguish between unintended and de-

liberate interference (radio jamming). The authors also created

a dataset using the R programming language while considering

a situation with interference and various radio jammer kinds.

Abhishek et al. [15] proposed an ML-based scheme to discover

jamming attacks. Specifically, the authors developed a dataset

using the NS3 simulator and selected two features to train their
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Fig. 1: 5G-V2X testbed’s base hardware/software resources.

model. Kosmanos et al. [16] suggested an ML-based scheme

to detect radio jamming in platoons. The authors used Veins

to construct their dataset to identify these attacks, considering

data from both the application and physical layers.

However, all these previous works have aimed to detect

attacks in V2X communications based on the IEEE 802.11p

standard, an old alternative solution for 5G-V2X. In contrast,

our approach focuses on detecting radio jamming attacks on

5G-V2X, particularly V2I and V2N communication interfaces.

Moreover, our DL model was trained on a dataset obtained

from a realistic 5G-V2X testbed involving commercial-grade

devices. Interested readers may refer to [7–9] for thorough

surveys on different types of cyberattacks and misbehavior

detection systems for vehicular networks.

III. 5G-V2X TESTBED DESCRIPTION

Fig. 1 shows the base hardware/software resources deployed

in our 5G-V2X testbed. Our work mainly relies on a 5G SA

setup consisting of a gNodeB at the Radio Access Network

(RAN) and a 5G Core Network (CN), this last one including,

among other modules, the Access and Mobility Management

Function (AMF), the Session Management Function (SMF),

and the User Plane Function (UPF). More specifically, the UPF

is responsible to provide users (i.e., the User Equipments –

UEs) access to the Internet, i.e., the Data Network (DN). To

emulate the RAN and CN elements, we use OpenAirInterface

(OAI) [17]. OAI is an open-source software developed by

Eurecom to support mobile telecommunication systems like

4G Long Term Evolution (LTE) and 5G New Radio (NR).

The 5G CN and 5G RAN elements run in separate machines.

Specifically, two Dell Precision 5820 Tower (Intel Xeon

W-2265 3.50GHz with 12 cores, 128GB of RAM). The RAN

machine is connected to a USRP X310 card which emulates

the gNodeB, thus creating a communication interface between

the 5G RAN and the UE. Finally, the UE is represented



Fig. 2: 5G radio jamming source: Gnuradio block diagram.

by a JetRacer Pro robot car based on the NVIDIA Jetson

Nano platform1. To connect with the 5G RAN, the robot car

integrates a SIMCom SIM8202G-M2 5G module2.

Our experiments generate benign traffic between the 5G CN

and the UE at a fixed throughput. To do that, we use the

iperf3 [18] tool, where the 5G CN is set as the client side,

and the UE is set as the server side. We use a USRP B210

card connected to the same machine where the 5G CN runs

to deploy radio jamming attacks. The USRP card is controlled

by a Gnuradio-based solution, which jams the same frequency

band that the 5G network uses to send the data generated by

the benign traffic. Fig. 2 shows the Gnuradio block diagram

for the radio jamming source.

IV. METHODOLOGY

This section presents the methodology adopted to collect and

pre-process our dataset and train our models to detect radio

jamming attacks. More specifically, we trained multiple ML

and DL models while considering each model’s accuracy and

detection time. We developed the ML and DL models based on

multiple algorithms. Since the objective is to compare our DL-

based approach with traditional ML algorithms, this section

extensively details our DL model’s training process.

A. Dataset collection

Several radio jamming scenarios were defined to generate

our dataset. Each scenario differs from the others by its specific

radio jamming behavior, which in turn is defined by two main

parameters: i) the duration of one radio jamming burst and ii)

the interval between two consecutive bursts. For each scenario,

the UE, the gNodeB, and the radio jamming source are placed

at fixed distances between them, and benign traffic generation

is triggered simultaneously with the radio jamming source.

Table I shows the values considered for all radio jamming

scenarios. We highlight that the values for the radio jamming

behavior parameters were defined based on preliminary exper-

iments, where we observed multiple drops in the throughput

once radio jamming bursts are deployed.

For each radio jamming scenario, we consider a respective

combination of radio jamming burst duration and the interval

between bursts, according to the values indicated in Table I.

Using the tshark tool, we capture network packets at the UE

side, thus generating one PCAP file. We also collect iperf3’s

performance output at the UE (server) side to assess the

1https://www.waveshare.com/jetracer-pro-ai-kit.htm
2https://www.waveshare.com/sim8202g-m2-5g-for-jetson-nano.htm

TABLE I: Data collection parameters for the radio jamming

scenarios.

Parameter Values

Jamming Burst Duration
100, 150, 200, 250, 300
milliseconds

Interval between Jamming Bursts 5, 10 seconds
Jamming Gain 75 dB
Targeted Frequency 3319.18 MHz (5G Band

n78)
Benign Traffic Throughput 20 Mbps
Data Collection Time per Scenario 4 minutes

Rx throughput over time and associate it with the respective

network packet capture.

In addition to the radio jamming scenarios, we included in

our dataset an extra one where no radio jamming attacks are

deployed, i.e., only iperf3 runs between the 5G CN and the

UE, whose data collection duration and throughput is the same

as previously done (i.e., 4 minutes and 20 Mbps, respectively).

To further illustrate the radio jamming behavior captured

in our dataset, Fig. 3a shows the Rx throughput (in Mbps)

measured by the UE in one of the scenarios here considered,

where the radio jamming burst duration is of 250 milliseconds

and the interval between radio jamming bursts is of 5 seconds.

In the same figure, such a scenario is compared to the one

where no radio jamming attacks are deployed.

(a) Radio jamming behavior example.
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Fig. 3: Radio jamming behavior and feature extraction.



As we can observe in Fig. 3a, the Rx throughput suffers

multiple drops over time at different magnitudes for the

scenario with radio jamming attacks. This can be explained by

the radio jamming source being an independent and external

entity, which is not timely synchronized with the 5G network

elements (i.e., the 5G CN/RAN and UE). Hence, the impacts

of each burst on the Rx throughput may vary constantly over

time. Additionally, the throughput peaks observed right after

most drops may happen due to an immediate adjustment by

the iperf3 tool to recover the fixed throughput of 20 Mbps.

B. Feature extraction

To utilize DL, we must gather features containing informa-

tion about the throughput changes between two consecutive

time instances. Our approach involves using a signal sam-

pling method to extract features that indicate the variation

between two sequential throughput values. The procedure

entails converting the throughput trace into a series of sam-

ples, each one serving as a single feature for the dataset.

Fig. 3b illustrates the feature extraction process from the inter-

throughput trace. We monitor the sampling process using the

sampling length (∆) and interval (δ). We divide the trace

into δ fragments and then compute each fragment’s inter-

variation (xi). The resulting consecutive ∆ samples represent

the feature vector X = [xi+1, xi+2, ....., xi+j , ....., xi+∆]. As

in signal processing, the smaller the sampling interval, the

more accurately the features can represent the original signal

and, in this scenario, the inter-throughput variation.

C. Model training

Our detector of radio jamming attacks on 5G V2I/V2N

communications was built using a DL multi-class model that

underwent a training and optimization process involving sev-

eral key decisions. Firstly, we selected a diverse and substantial

dataset that was split into training, validation, and test sub-

datasets, 70% allocated for training, of which 10% was used

for validation, and 30% for testing. We also applied data aug-

mentation methods in our dataset to improve generalization.

The model’s architecture comprises an input layer with 10

neuron nodes, five hidden layers with 1000 hidden nodes for

each layer, and an output layer with 3 nodes based on one hot

encoding. To speed up learning, we used the ReLU activation

function for the hidden nodes and the softmax function for the

output layer. The ADAM optimizer with a learning rate of 0.01

was also used to calculate the weights of the DL model. To

prevent overfitting, dropout layers at a rate of 0.3 were added.

A fine tuning of hyperparameters was performed, including

mini-batches of size 64 and 1500 epochs for training. Please

refer to Table II for the DL model’s training parameters.

We used Python with the scikit-learn, Tensorflow, and

Keras tools to train and test our DL model and compare the

performance with traditional ML algorithms.

V. PERFORMANCE RESULTS

In this section, we describe the performance metrics and the

results obtained with the ML and DL models, whose training

TABLE II: Training parameters of the DL model.

Parameter Value

Optimizer ADAM
Learning Rate 0.01
Batch Size 64
Dropout 0.3
Epochs 1500
Ratio of Validation/Test Dataset 10%/30%

procedure is described in Section IV, to detect radio jamming

attacks using data collected from our 5G-V2X testbed.

A. Performance metrics

This section presents the performance metrics used to eval-

uate the developed ML and DL models. Our main objective is

to compare the test results obtained using our custom dataset,

to determine if our developed models detect and classify the

presence of radio jamming attacks correctly, and to address

any overfitting and underfitting problems. To do so, we use

the following metrics:

• The model’s accuracy (ACC): How accurate a model is

in detecting and classifying traffic as normal or jammed:

ACC =
TP + TN

TP + FP + TN + FN
(1)

• Precision (PPV): The model’s positive predictive value:

PPV =
TP

TP + FP
(2)

• Recall - True Positive Rate (TPR): The probability that

an actual attack will be detected and classified correctly:

TPR =
TP

TP + FN
(3)

• False Positive Rate (FPR): The probability that normal

traffic will be classified as jammed traffic:

FPR =
FP

FP + TN
(4)

• F1 Score (F1): The harmonic mean between precision

(PPV) and recall (TPR) calculated separately for each

class and then averaged:

F1 = 2×
PPV × TPR

PPV + TPR
(5)

• Detection Time (DT): The time (in seconds) spent by

ML/DL models to detect a radio jamming attack.

B. Machine learning models’ results

In this section, we present and discuss the results obtained

using traditional ML algorithms, in terms of ACC, PPV, TPR,

FPR, F1 and DT metrics, by using our custom dataset collected

through our 5G-V2X testbed.

With the validation set as input, all ML models achieved an

ACC of 99%. Table III shows the performance results obtained

for the same ML models with the test set as input.



TABLE III: ML models results with the test set as input.

ML Model
Performance Metric

ACC PPV TPR FPR F1 DT

Logistic
0.4561 0.3852 0.3793 0.6207 0.3356 0.37

Regression
KNN 0.7894 0.7867 0.8309 0.1691 0.8027 0.18
SVM 0.6491 0.7222 0.7296 0.2704 0.6701 0.24

Naive Bayes 0.6491 0.7252 0.6896 0.3104 0.6963 0.75
Decision Tree 0.7894 0.7976 0.8327 0.1673 0.8102 0.18

Random Forest 0.7719 0.8069 0.8212 0.1788 0.8033 0.19

Concerning model Logistic Regression, we can see that

ACC, PPV, TPR, FPR and F1 are quite low for the test set

in comparison with the validation set and in comparison with

the other ML models. Moreover, DT is not the lowest among

the other ML models. Such a result shows that this model

is underfitting and does not correctly classify the presence or

absence of a radio jamming attack.

Furthermore, models SVM and Naive Bayes provided similar

results in terms of ACC, PPV, TPR, FPR, F1, and DT besides

performing better in comparison with Logistic Regression.

However, these two models still perform poorly with an ACC

of around 65% and a DT of 0.24 and 0.75 seconds, respec-

tively, in comparison with KNN, DecisionTree and Random

Forest, that provide an ACC of around 78% and a DT of

around 0.18 seconds, which shows that model Naive Bayes has

the slowest DT among all ML models. The same two models

also perform poorly when compared to the results with the

validation set as input. This indicates that these models are

underfitting, preventing us from using them in our 5G-V2X

testbed.

It is important to highlight that models KNN, DecisionTree

and Random Forest provided the best results in terms of

ACC, PPV, TPR, FPR, F1 and DT, in comparison to the

previously mentioned algorithms, with the results of KNN

and DecisionTree being the two best ones in terms of ACC

(around 79%) and DT (around 0.18 seconds), DecisionTree

being the best one in terms of TPR (around 83%), FPR

(around 16%), F1 (around 81%) and Random Forest being the

best in terms of PPV (around 80%). However, these results

cannot be applied reliably on our 5G-V2X testbed since the

accuracy for detecting and correctly classifying each type of

radio jamming attack is not very high.

Finally, an overall observation of the results above is that

the traditional ML algorithms have a regular performance in

detecting radio jamming attacks. However, their performance

results can be enhanced since the FPR is still considered high,

even in the case of the models that provided the best results.

Such a result indicates that the model will likely incorrectly

classify radio jamming attacks.

C. Deep learning model’s results

In this section, we present and discuss the results obtained

using our DL model in terms of ACC, PPV, TPR, FPR, F1 and

DT, using our custom dataset obtained through our 5G-V2X

testbed. As observed for the aforementioned ML models in

TABLE IV: DL model results with the test set as input.

Performance Metric

ACC PPV TPR FPR F1 DT

0.9591 0.9783 0.9794 0.0206 0.9676 0.11

TABLE V: DL model results for each traffic class.

Traffic Class
Performance Metric

ACC PPV TPR FPR F1

Benign 0.9930 1.0000 1.0000 0.0000 0.9997
RJ Class I 0.9146 0.9481 0.9513 0.0487 0.9329
RJ Class II 0.9697 0.9868 0.9871 0.0129 0.9702

Section V-B, our DL model also achieved an ACC, PPV, TPR,

FPR and F1 of 99%, with the validation set as input. Table IV

shows the performance results obtained for our DL model with

the test set as input.

By observing the results from Table IV, it is evident that the

DL model has better results than the ML models presented in

Section V-B, in terms of ACC, PPV, TPR, FPR, F1 and DT. We

highlight the results obtained for ACC and FPR, which attained

around 96% and less than 3%, respectively. Along with the

other metrics above, such results demonstrate the absence of

underfitting and overfitting on this model since it performs well

on the validation and test sets and shows the capacity of the DL

model to identify a radio jamming attack promptly. Indeed, we

can see from this table that our DL model reduces considerably

the DT by around 39% and 85% compared to the fastest ML

models observed in Table III (i.e., KNN and Decision Tree)

and the slowest one (i.e., Naive Bayes), respectively.

Table V presents the performance results obtained for each

of the three traffic classes in our dataset: (i) the Benign class:

This class represents the context where we have normal traffic

without radio jamming attacks, (ii) the Radio Jamming (RJ)

Class I: This class represents the scenario where we deploy

radio jamming attacks with a time interval of 5 seconds

between jamming bursts, and finally (iii) the RJ Class II: This

class represents the scenario where we deploy radio jamming

attacks with a time interval of 10 seconds between radio

jamming bursts.

The results observed from Table V show that the DL model

accurately classifies and distinguishes between each traffic

class, with an ACC of around 99%, 91% and 97% for the

Benign, RJ Class I and RJ Class II classes, respectively.

To further illustrate the results obtained with our DL model,

we show the model’s ACC in Fig. 4 and the loss in Fig. 5

during each epoch, with the test set as input. By observ-

ing Fig. 4, we can notice an upward trend, showcasing the

model’s ability to learn and improve over time. It converges

to around 96%, indicating that the DL model has learned

enough to make correct predictions with high consistency. On

the other hand, Fig. 4 shows a consistent descent in the loss,

achieving approximately 3%, which means that the DL model



Fig. 4: DL model accuracy results.

Fig. 5: DL model loss results.

has effectively minimized its error, optimizing its predictive

capabilities to near perfection.

Given the behavior observed above, and the fact that the DL

model provides the best results compared to all ML models, we

can conclude that it can be reliably deployed for detecting and

classifying radio jamming attacks in a 5G-V2X environment.

VI. CONCLUSION

In this work, we presented a new approach based on DL to

detect radio jamming attacks on 5G V2I/V2N communication

interfaces. To assess the validity of our approaches, we built a

5G-V2X testbed to collect the data needed to train and test our

developed models. We compared the performance of traditional

ML models with our DL model in terms of prediction accuracy,

false positive rate, detection time, and other relevant ML-

related performance metrics using our custom dataset gener-

ated by the 5G-V2X testbed. For our DL model, we obtained

an accuracy of up to 96%, a false positive rate of less than 3%,

and a detection time decrease of 39% minimum.

In future work, we intend to mitigate radio jamming attacks

by using network slicing to isolate the radio jamming sources.

In addition, we intend to explore new techniques to detect

radio jamming attacks by using Long Short Term Memory

Networks (LSTMs) and Recurrent Neural Networks (RNNs),

and compare their performance results with those obtained by

our DL model. Finally, we plan to extend our dataset by adding

new features and new radio jamming-based scenarios, then

make it publicly available to enable the research community

to reproduce our experiments.
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